Effect of Light Intensity on CurrentCollection in Thin-Film Solar Cells
نویسنده
چکیده
We have measured the current-voltage curves of thin-film solar cells using focused laser spots (30 500 μm) using DC and modulated (AC) photocurrent techniques. The AC short-circuit current response (ISC ) and the AC fill factors (FF) decrease for small spot sizes corresponding to several 100 sun light intensities. Laser line scans across the devices produced significant but reproducible spatial fluctuations in AC ISC. These spatial variations depend on spot size and are reduced by scanning with lower light intensity. The reduction of AC FF and AC ISC was largest in a-Si:H, intermediate in CdTe and CuInSe2 (CIS), barely noticeable in some Cu(Ga,In)Se2 (CIGS) cells and absent in a silicon cells. The observations on CIGS and some CIS cells can be explained by internal series resistance, but field dependent collection and recombination effects must be invoked to explain results on most thin-film solar cell materials. Such field modification is not accounted for in standard exponential diode equation models.
منابع مشابه
Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملDesign of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency
In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملThe Effect of pH on the Optical Band Gap of PbSe Thin Film with Usability in the Quantum Dot Solar Cell and Photocatalytic Activity
This study was an attempt to provide a simple solution processed synthesis route for Lead Selenide (PbSe) nanostructure thin films using the chemical bath deposition (CBD) method which is commercially available in inexpensive precursors. In the CBD method, the preparation parameters play a considerable role and determine the nature of the final product formed. Known as two main factors, the eff...
متن کاملPreparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کامل